
XAPP733 (v1.0) May 24, 2012 www.xilinx.com  1

© Copyright 2012 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Zynq, and other designated brands included herein are trademarks of Xilinx in the United 
States and other countries. All other trademarks are the property of their respective owners.

Summary This document details the implementation of the MultiBoot feature and the LogiCORE™ IP Soft 
Error Mitigation (SEM) controller for Spartan®-6, Virtex ®-6, and 7 series FPGAs. The six 
supporting reference designs embody key concepts.

Introduction The MultiBoot feature supports robust design management and field upgrade capabilities. 
Designers initiate a MultiBoot event by commanding the FPGA to fully reconfigure itself with an 
alternate bitstream. The required commands are usually issued via the internal configuration 
access port (ICAP).

Typically, the SEM controller has exclusive control of the ICAP to meet its functional and 
performance specifications. Designers who apply MultiBoot and the SEM controller must 
coordinate ICAP sharing. Designers might also need to organize multiple sets of SEM 
controller data in addition to multiple sets of FPGA configuration data.

This application note demonstrates how to apply the method documented in Dual Use of ICAP 
with SEM Controller [Ref 1] towards a reusable MultiBoot module compatible with the SEM 
controller for Spartan-6, Virtex-6, and 7 series FPGAs. Additionally, this application note 
illustrates how to organize multiple sets of SEM controller data. The supporting reference 
designs yield implementations for hardware evaluation on the SP605, ML605, and KC705 
evaluation kits.

MultiBoot 
Overview

The MultiBoot feature provides designers with an inexpensive method to perform dynamic full 
reconfiguration of an FPGA. Dynamic full reconfiguration has a wide range of applications, 
including robust design management and field upgrade capability.

Prior to the introduction of MultiBoot, implementation of dynamic, full reconfiguration incurred 
development costs for a proprietary solution involving additional hardware, software, and 
design tool components. With MultiBoot, these costs are eliminated. Only the per bit storage 
cost of FPGA configuration data remains.

Although the details of MultiBoot vary between Spartan-6, Virtex-6, and 7 series FPGAs, the 
fundamentals of a MultiBoot event are identical. The designer programs the FPGA with the next 
bitstream location, then commands the FPGA to load the next bitstream. As a result, the FPGA 
shuts down its programmable logic, loads the next bitstream, and then starts up its 
programmable logic. The MultiBoot event can be protected by optional error-recovery features 
to guard against data corruption during FPGA configuration.

Programing the Next Bitstream Location

In addition to programmable logic, the FPGA contains a block of dedicated circuitry that is 
responsible for managing the programmable logic. This management function is called the 
configuration logic and its primary function is to load FPGA configuration data into configuration 
memory, thereby setting the behavior of the programmable logic.

Application Note: Spartan-6, Virtex-6, and 7 Series FPGAs

XAPP733 (v1.0) May 24, 2012

Applying MultiBoot and the LogiCORE IP 
Soft Error Mitigation Controller
Author: Eric Crabill

http://www.xilinx.com


Coordination of ICAP Sharing

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  2

In preparation for a MultiBoot event, the designer programs the FPGA with the next bitstream 
location with register write commands to specific registers in the configuration logic. The two 
recommended approaches that can be used individually or in combination are:

• Using the bitstream generator program (BitGen):

• The designer specifies option switches with the next bitstream location.

• BitGen translates the option switches into register write commands inserted in the 
bitstream. The information is placed into the associated configuration logic registers 
during the configuration process.

• Using the ICAP:

• The designer determines the register write commands required to set the next 
bitstream location.

• The designer includes functionality to apply the register write commands to the ICAP. 
The information is placed into the associated configuration logic registers when the 
register write commands are issued at runtime.

When used individually, the BitGen approach does not support runtime selection of the next 
bitstream location, nor does it eliminate the need for the ICAP. While the BitGen approach 
eliminates register write commands required to set the next bitstream location, the ICAP is 
needed to command the next bitstream load. For advanced applications, the ICAP might also 
be required to read MultiBoot status. For these reasons, the simplest solution is often to 
program MultiBoot operations entirely via the ICAP and to use BitGen only for setting optional 
error recovery features.

Note: The user should know which registers are written by BitGen and which ones are written by the 
ICAP to ensure accurate tracking of MultiBoot status. It is also important to know whether MultiBoot 
operations are used to implement a safe update application.

Commanding the Next Bitstream Load

The designer commands the FPGA to load the next bitstream by issuing an IPROG command 
to the configuration logic. This step is done with a register write of the IPROG command to the 
command register in the configuration logic.

After an IPROG command is issued, the configuration logic shuts down the programmable logic 
within a few clock cycles. Therefore, this command terminates activity of the design that issued 
the IPROG command. The configuration logic then loads the next bitstream from the specified 
location and subsequently starts up the programmable logic.

Support Detail

For register-level detail on programming the next bitstream location and commanding the next 
bitstream load, refer to the configuration user guides for the target FPGAs:

• Spartan-6 FPGA Configuration User Guide [Ref 2]

• Virtex-6 FPGA Configuration User Guide [Ref 3]

• 7 Series FPGAs Configuration User Guide [Ref 4]

Successful application of MultiBoot requires information about the mode used to configure the 
FPGA device and information about the FPGA itself. The supporting reference designs 
described in this document use the SP605 [Ref 5], ML605 [Ref 6], and KC705 [Ref 7] 
evaluation kits as context for examples.

Coordination of 
ICAP Sharing

Most implementations of MultiBoot use the ICAP. If nothing else in the design requires access 
to the ICAP, the designer can monopolize the ICAP—even though only a few dozen clock 
cycles of access are actually required for a MultiBoot event. If other functions require access to 
the ICAP, the designer must coordinate between all functions to share the ICAP.

http://www.xilinx.com


Data Organization

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  3

The SEM controller generally has exclusive control of the ICAP to meet its functional and 
performance specifications. Many devices have two ICAPs, with a provision to switch between 
them. This reference design assumes the use of one ICAP so the general solution is the same 
for all FPGA families. To share one ICAP, the SEM controller can be idled, temporarily freeing 
the ICAP for other uses. This sharing method is documented in Dual Use of ICAP with 
SEM Controller [Ref 1] and is ideal for applying MultiBoot and the SEM controller.

A generic sharing sequence can be coordinated by control logic, such as a finite state machine. 
The following sequence removes manual intervention from the method documented in 
Dual Use of ICAP with SEM Controller [Ref 1] and adapts it to the specific case of MultiBoot:

1. A system-specific MultiBoot next bitstream location is determined.

2. A system-specific MultiBoot trigger occurs.

3. Control logic commands the SEM controller to idle using the SEM controller error injection 
port.

4. Control logic waits for the SEM controller to idle using the SEM controller status port.

5. Control logic multiplexes the ICAP away from the SEM controller for its own use.

6. Control logic issues the required commands to the ICAP for a MultiBoot event.

7. Wait forever is the final step that prevents further activity on the ICAP.

The IPROG command terminates activity of the design that issued the IPROG command, 
including the control logic and the SEM controller, within a few cycles. For this reason, the 
interruption of the SEM controller has no impact on its error mitigation performance. Further 
action by the control logic to restart the SEM controller is unnecessary.

Data 
Organization

For detailed recommendations about the organization of FPGA configuration data for 
MultiBoot, see the target FPGA configuration user guides [Ref 2], [Ref 3], [Ref 4]. A successful 
MultiBoot event depends on the next bitstream being properly stored at a known address in a 
non-volatile device suitably interfaced to the FPGA for configuration. The required amount of 
storage for FPGA configuration depends on the number of bitstreams to be stored, the 
bitstream size, and a few second-order considerations described in the FPGA configuration 
user guides.

Designers might also need to consider the organization of SEM controller data. A SEM 
controller instance uses external data if one or both of these optional features are enabled:

• Error correction by replace

• Error classification

When these optional features are enabled, the SEM controller example design includes a 
simplified serial peripheral interface (SPI) master through which the SEM controller accesses 
data in an SPI flash. The SPI flash is dedicated to the SEM controller and independent from any 
nonvolatile devices used for FPGA configuration.

When the SPI master is present in the SEM controller example design, the SEM controller 
gains an additional 32-bit input port named fetch_tbladdr. The SEM controller uses the value 
applied to this port as a pointer to a table in the SPI flash. By default, fetch_tbladdr is assigned 
to zero in the SEM controller example design. The SPI flash programming file created by the 
SEM controller example design implementation script must be stored in the SPI flash starting at 
address zero.

The table in the SPI flash contains one or more pointers to blocks of data. These pointers are 
calculated assuming the blocks of data immediately follow the table and that the table is stored 
in the SPI flash starting at address zero. Refer to LogiCORE IP Soft Error Mitigation Controller 
v3.2 Product Guide [Ref 8] for additional information on the format of this table.

For MultiBoot, if more than one bitstream contains a SEM controller instance using external 
data, multiple sets of SEM controller data exist. Multiple sets of SEM controller data cannot all 

http://www.xilinx.com


MultiBoot Application Example

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  4

be stored in the SPI flash starting at address zero. The solution is to concatenate the required 
sets of SEM controller data and note the starting address for each set. The pointers in the table 
for each set must be adjusted by the starting address for the set. The adjusted, concatenated 
information is stored in the SPI flash.

In the design for each applicable bitstream, fetch_tbladdr must be set so that the SEM controller 
instance can find its unique data in the SPI flash. With a minimal amount of pre-planning to 
develop a memory map of the SPI flash, fetch_tbladdr can be set with constant values at design 
time, or at runtime if necessary, provided it is set prior to the SEM controller entering the 
observation state.

Note: It is critical to maintain consistency between the FPGA configuration data and the SEM controller 
data. If a bitstream is updated for any reason, any corresponding SEM controller data must also be 
updated. The SEM controller’s usage of stale or incorrect classification data can erode reliability, and 
usage of stale or incorrect replace data can result in functional failure.

MultiBoot 
Application 
Example

The reference designs are examples of fallback MultiBoot with golden image load at power-up. 
Each bitstream contains an instance of the SEM controller using external data.

Getting Started

There are six supporting reference designs in the ZIP file that accompanies this application 
note (see Reference Designs). After accepting the license agreement, the user can download 
and decompress the ZIP file. The readme.txt file contains the detailed directory structure 
and file listing. Table 1 lists the supporting reference designs.

Each supporting reference design uses these two bitstreams that are generated from the SEM 
controller example design:

• Implementation A

• Implementation B

The SEM controller and the example design are not included. To generate them from the 
supplied CGP and XCO files the user follows these steps:

1. Select a supporting reference design to evaluate.

2. Use the CORE Generator™ tool to open the associated CGP and XCO files.

3. Generate the SEM controller (which also generates the SEM controller example design).

4. Exit the CORE Generator tool.

Note: The steps can be done interactively in a CORE Generator tool window or through the tool’s batch 
mode:

Table  1:  Supporting Reference Design List

Family Language Hardware Target CGP, XCO, 
Directory Name

Spartan-6 FPGA
Verilog SP605 (XC6SLX45T-FGG484-2)

and 128 Mb SPI flash(1)

spartan6_ver

VHDL spartan6_vhd

Virtex-6 FPGA
Verilog ML605 (XC6VLX240T-FF1156-2)

and 128 Mb SPI flash(1)

virtex6_ver

VHDL virtex6_vhd

7 Series FPGAs
Verilog KC705 (XC7K325T-FFG900-2)

and 256 Mb SPI flash(1)

kintex7_ver

VHDL kintex7_vhd

Notes: 
1. The private SPI flash used by the SEM controller is not included in the evaluation kit. SPI flash is an 

optional, user-provided resource that enables evaluation of SEM controller data organization.

http://www.xilinx.com


MultiBoot Application Example

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  5

coregen –p <project.cgp> –b <core.xco>

The CORE Generator tool overlays the generated output products on the selected supporting 
reference design directory. To ensure that files are deposited where expected, the user selects 
the directory where the associated CGP and XCO files exist.

The CGP file contents select the family, language, and hardware target. The XCO file contents 
set the SEM controller features:

• Enable Correction = True

• Correction Method = Repair

• Enable Classification = True

• Enable Injection = True

• Injection Shim = Pins

• Retrieval Shim = SPI flash

To use the supporting reference designs as provided with the listed hardware targets, the CGP 
and XCO file contents must not be changed. However, these designs are intended for 
adaptation, and in general, the only requirement is that the SEM controller has the error 
injection feature enabled. Control logic in the supporting reference designs commands the 
SEM controller to idle using the SEM controller error injection port.

Design Overview

The supporting reference designs introduce a MultiBoot module into the SEM controller 
example design and also contain additional minor modifications, with the result shown in 
Figure 1. The blocks drawn in gray only exist for certain configurations of the SEM controller 
example design. See the LogiCORE IP Soft Error Mitigation Controller v3.2 Product Guide 
[Ref 8] for illustrations of the unmodified SEM controller example design.

The example_design subdirectory in each supporting reference design’s directory contains 
the original SEM controller example design source files. The xapp_design subdirectory 

X-Ref Target - Figure 1

Figure 1: Modified SEM Controller Example Design

ICAP FRAME
ECC

SEM Controller

MON Shim

SEM Controller Example Design

MultiBoot
Module

EXT Shim
SPI
Interface

Status

Serial
Interface

MultiBoot Trigger

X733_01_032312

Clock

Configuration Logic

THIS_SEM_IP_ADDRESS

THIS_BITSTREAM_NMBR Design
Number

NEXT_CONFIG_ADDRESS

mbt_icap_i/cs/rdwrb

fetch_tbladdrinject_strobe

inject_address

status_*

mbt_next_addr

mbt_icap_sel

http://www.xilinx.com


MultiBoot Application Example

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  6

contains the MultiBoot module and modified source files. The modifications to the source files 
are:

• The parameter THIS_BITSTREAM_NMBR is added to the SEM controller example design 
and the value applied to a new output port design_number[2:0]. This change provides a 
way to discriminate between multiple bitstreams produced from the same SEM controller 
example design source files.

• The parameter THIS_SEM_IP_ADDRESS is added to the SEM controller example design 
and the value applied to the internal signal fetch_tbladdr[31:0], which was previously 
driven to zero. This change provides a way to set arbitrary starting addresses for the SEM 
controller data.

• The parameter NEXT_CONFIG_ADDRESS is added to the SEM controller example 
design and the value is applied to a new internal signal mbt_next_addr[31:0]. This change 
provides a way to set arbitrary next bitstream addresses for the MultiBoot module.

• The MultiBoot module is instantiated in the SEM controller example design and connected 
in the following manner:

• The SEM controller error injection port is removed from the top-level I/O pin 
connection and interfaced to the MultiBoot module. This change enables the MultiBoot 
module to issue commands to the SEM controller.

• The five state signals from the SEM controller status port are interfaced to the 
MultiBoot module. This change enables the MultiBoot module to observe the state of 
the SEM controller, primarily to determine when the SEM controller is idle.

• The signal driven with the next bitstream address is interfaced to the MultiBoot 
module.

• A top-level I/O pin is added to provide an external MultiBoot trigger signal to the 
MultiBoot module.

• The ICAP multiplexer select, cs, rdwrb, and data signals generated by the MultiBoot 
module are combined with those from the SEM controller using a multiplexer. As 
documented in Dual Use of ICAP with SEM Controller [Ref 1], this multiplexer must be 
purely combinational, otherwise the SEM controller fails to operate properly.

• The constraint file is updated to reflect the changes in top-level I/O pins and assign pin 
locations suitable for the hardware target. The four I/O pins associated with the optional, 
user-provided SPI flash for private use of the SEM controller have placeholder location 
constraints. The user can update these placeholder constraints, if desired.

• A modified copy of the SPI Master is supplied and enables 4-byte addressing mode. This 
modification is necessary when two sets of SEM controller data require the use of a 
256 Mb SPI flash.

Design Detail

This section provides details on the MultiBoot module and the parameter value selection. The 
user can review the MultiBoot module source files and the modified source files, if desired.

MultiBoot Module

The MultiBoot module contains control logic to coordinate the generic sharing sequence. The 
sequencing is identical in all implementations, although the register write commands issued to 
the configuration logic via the ICAP are unique to each FPGA family. The MultiBoot module is 
constructed from a counter-driven table (see Figure 2) so that the general solution is the same 
for all FPGA families, and only the table contents and datapath widths differ.

http://www.xilinx.com


MultiBoot Application Example

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  7

The next bitstream location is provided through the mbt_next_addr port and the value is used 
where needed in the table. The trigger is provided through the mbt_trigger port. This signal is 
synchronized and debounced only so that it can be driven by a mechanical pushbutton.

The counter increments when enabled to do so by the fsm_advance signal. The wait control 
logic uses the table wait_* feedback signals to determine if it should unconditionally advance, 
wait for trigger, wait for idle, or unconditionally halt. As the counter increments, it plays back a 
stored sequence from the remaining table outputs.

The inject_address and inject_strobe outputs are connected to the SEM controller error 
injection port. After waiting for the trigger, the control logic commands the SEM controller to idle 
by providing the “enter idle” command with a three-cycle assertion of the inject_strobe output. 
After this, the control logic waits for the SEM controller to idle, a condition decoded from the 
SEM controller status port signals status_*.

After the SEM controller is idle, no further error detections occur, and the control logic 
multiplexes the ICAP away from the SEM controller using the mbt_icap_sel output. The control 
logic then presents the required commands to the ICAP for the MultiBoot event using the 
mbt_icap_i, mbt_icap_cs, and mbt_icap_rdwrb outputs:

• SYNC word.

• Type 1 write to CMD register with NULL command.

• Type 1 write to GENERAL1 and GENERAL2, or WBSTAR (depends on the FPGA 
architecture).

• Type 1 write to CMD register with IPROG command.

The ICAP activity depends on mbt_next_addr and the FPGA architecture. The sequences are 
based on information presented in the FPGA configuration user guides, modified by 
requirements for sharing the ICAP with the SEM controller. Refer to the MultiBoot module 
source files for register-level detail. After the ICAP activity is complete, reconfiguration occurs.

SP605 Parameter Selection

The MultiBoot module loads NEXT_CONFIG_ADDRESS into the Spartan-6 FPGA’s 
GENERAL1 and GENERAL2 registers as the next bitstream location. The GENERAL1 and 
GENERAL2 settings are based on the SP605 schematic, which shows the FPGA configuration 
signal A[23] connected to the most significant address pin on the 16M x 16 (256 Mb) parallel 
flash. The parallel flash is large enough to hold two bitstreams.

The parallel flash is logically divided into two banks, one bank for each bitstream. The selection 
is made via the FPGA’s configuration signal A[23] with the remaining lower address bits always 
zero. It is assumed that Implementation A is in bank zero, and Implementation B is in bank one.

For Implementation A to reconfigure the FPGA with Implementation B, 
NEXT_CONFIG_ADDRESS is 0x00800000 hex, or 8,388,608 decimal:

• GENERAL2[15:10] = 000000, reserved

• GENERAL2[9:8] = 00, unused

X-Ref Target - Figure 2

Figure 2: MultiBoot Module Block Diagram

SYNC
DEBOUNCE

TABLE

status_*

mbt_next_addr

X733_02_032312

IDLE
DETECT

WAIT
CONTROL

UP
CTR

ENmbt_trigger
mbt_event

sem_event

fsm_advance
fsm_state

wait_*

inject_address

inject_strobe

mbt_icap_i/cs/rdwrb

mbt_icap_sel

http://www.xilinx.com


MultiBoot Application Example

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  8

• GENERAL2[7:0] = 10000000

• GENERAL1[15:0] = 0000000000000000

For Implementation B to reconfigure the FPGA with Implementation A, 
NEXT_CONFIG_ADDRESS is 0x00000000 hex, or 0 decimal:

* GENERAL2[15:10] = 000000, reserved

* GENERAL2[9:8] = 00, unused

* GENERAL2[7:0] = 00000000

* GENERAL1[15:0] = 0000000000000000

The SEM controller locates the start of its data in the SPI flash using 
THIS_SEM_IP_ADDRESS. The 16M x 8 (128 Mb) SPI flash is large enough to hold two sets of 
data considering the SEM controller option settings. Therefore, if the SPI flash is logically 
divided into two banks, one bank for each set of data, the starting address only differs by the 
most significant address bit of the SPI flash. It is assumed that Implementation A stores its data 
in bank zero, and Implementation B stores its data in bank one.

For Implementation A to find its data, THIS_SEM_IP_ADDRESS is 0x00000000 hex, or 0 
decimal. For Implementation B to find its data, THIS_SEM_IP_ADDRESS is 0x00800000 hex, 
or 8,388,608 decimal.

Figure 3 illustrates the resulting memory maps for the flash devices associated with this 
application example.

X-Ref Target - Figure 3

Figure 3: Data Organization for the SP605 MultiBoot Application Example

FPGA Configuration Data Memory Map
for Configuration on the SP605 Board from

16M x 16 (256 Mb) Parallel Flash

Implementation B
FPGA Data for MultiBoot Image

BIT File Stored Up
from Word Address

0x800000

Implementation A
FPGA Data for Golden Image

BIT File Stored Up
from Word Address

0x000000

SEM Controller Data Memory Map
for Private Data from

16M x 8 (128 Mb) SPI Flash

0x000000

Lo
gi

ca
l B

an
k 

0
(F

P
G

A
 A

[2
3]

 =
 0

)
Lo

gi
ca

l B
an

k 
1

(F
P

G
A

 A
[2

3]
 =

 1
)

0x800000
0x7FFFFF

0xFFFFFF

Implementation B
SEM Data for MultiBoot Image

BIN File Stored Up
from Byte Address

0x800000

Implementation A
SEM Data for Golden Image

BIN File Stored Up
from Byte Address

0x000000

0x000000

X733_03_041812

Lo
gi

ca
l B

an
k 

0
Lo

gi
ca

l B
an

k 
1

0x800000
0x7FFFFF

0xFFFFFF

http://www.xilinx.com


MultiBoot Application Example

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  9

THIS_BITSTREAM_NMBR is the value applied to LEDs identified as DS3, DS4, and DS5 in 
the SP605 schematic to visually identify the bitstream. For Implementation A, the value used 
is 2, which results in DS4 turning on and DS3 and DS5 turning off (Figure 6). For 
Implementation B the value used is 5, which results in DS3 and DS5 turning on and DS4 
turning off (Figure 7).

ML605 Parameter Selection

The MultiBoot module loads NEXT_CONFIG_ADDRESS into the Virtex-6 FPGA’s WBSTAR 
register as the next bitstream location. WBSTAR settings are based on the ML605 schematic, 
which shows FPGA configuration signal RS[0] connected to the most significant address pin on 
the 16M x 16 (256 Mb) parallel flash. The parallel flash is large enough to hold two bitstreams.

The parallel flash is logically divided into two banks, one bank for each bitstream. The selection 
is made via RS[0] with the remaining lower address bits always zero. It is assumed that 
Implementation A is in bank zero, and Implementation B is in bank one.

For Implementation A to reconfigure the FPGA with Implementation B, 
NEXT_CONFIG_ADDRESS is 0x0C000000 hex, or 201,326,592 decimal:

• WBSTAR[31:29] = 000, reserved

• WBSTAR[28:27] = 01, RS[1:0] drive value

• WBSTAR[26] = 1, RS[1:0] driver enable

• WBSTAR[25:0] = 00000000000000000000000000

For Implementation B to reconfigure the FPGA with Implementation A, 
NEXT_CONFIG_ADDRESS is 0x04000000 hex, or 67,108,864 decimal:

• WBSTAR[31:29] = 000, reserved

• WBSTAR[28:27] = 00, RS[1:0] drive value

• WBSTAR[26] = 1, RS[1:0] driver enable

• WBSTAR[25:0] = 00000000000000000000000000

The SEM controller locates the start of its data in the SPI flash using 
THIS_SEM_IP_ADDRESS. The 16M x 8 (128 Mb) SPI flash is large enough to hold two sets of 
data considering the SEM controller option settings. Therefore, if the SPI flash is logically 
divided into two banks, one bank for each set of data, the starting address only differs by the 
most significant address bit of the SPI flash. It is assumed that Implementation A stores its data 
in bank zero, and Implementation B stores its data in bank one.

For Implementation A to find its data, THIS_SEM_IP_ADDRESS is 0x00000000 hex, or 0 
decimal. For Implementation B to find its data, THIS_SEM_IP_ADDRESS is 0x00800000 hex, 
or 8,388,608 decimal.

Figure 4 illustrates the resulting memory maps for the flash devices associated with this 
application example.

http://www.xilinx.com


MultiBoot Application Example

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  10

THIS_BITSTREAM_NMBR is the value applied to LEDs identified as DS16, DS17, and DS19 
on the ML605 schematic so that the bitstream identity can be identified visually. For 
Implementation A the value used is 2, which results in DS16 turning on and DS17 and DS19 
turning off (Figure 8). For Implementation B the value used is 5, which results in DS17 and 
DS19 turning on and DS16 turning off (Figure 9).

KC705 Parameter Selection

The MultiBoot module loads NEXT_CONFIG_ADDRESS into the Kintex-7 FPGA’s WBSTAR 
register as the next bitstream location. The WBSTAR settings are based on the KC705 
schematic, which shows FPGA configuration signal RS[1:0] connected to the two most 
significant address pins on the 64M x 16 (1 Gb) parallel flash. The parallel flash is large enough 
to hold four bitstreams. 

The parallel flash is logically divided into four banks, one bank for each bitstream and two 
unused banks. The selection is made via RS[1:0] with the remaining lower address bits always 
zero. It is assumed that Implementation A is in bank zero, and Implementation B is in bank one.

For Implementation A to reconfigure the FPGA with Implementation B, the 
NEXT_CONFIG_ADDRESS is 0x60000000 hex, or 1,610,612,736 decimal:

• WBSTAR[31:30] = 01, RS[1:0] drive value

• WBSTAR[29] = 1, RS[1:0] driver enable

• WBSTAR[28:0] = 00000000000000000000000000000

For Implementation B to reconfigure the FPGA with Implementation A, the 
NEXT_CONFIG_ADDRESS is 0x20000000 hex, or 536870912 decimal:

• WBSTAR[31:30] = 00, RS[1:0] drive value

• WBSTAR[29] = 1, RS[1:0] driver enable

X-Ref Target - Figure 4

Figure 4: Data Organization for the ML605 MultiBoot Application Example

FPGA Configuration Data Memory Map
for Configuration on the ML605 Board from

16M x 16 (256 Mb) Parallel Flash

Implementation B
FPGA Data for MultiBoot Image

BIT File Stored Up
from Word Address

0x800000

Implementation A
FPGA Data for Golden Image

BIT File Stored Up
from Word Address

0x000000

SEM Controller Data Memory Map
for Private Data from

16M x 8 (128 Mb) SPI Flash

0x000000

Lo
gi

ca
l B

an
k 

0
(F

P
G

A
 R

S
[0

] =
 0

)
Lo

gi
ca

l B
an

k 
1

(F
P

G
A

 R
S

[0
] =

 1
)

0x800000
0x7FFFFF

0xFFFFFF

Implementation B
SEM Data for MultiBoot Image

BIN File Stored Up
from Byte Address

0x800000

Implementation A
SEM Data for Golden Image

BIN File Stored Up
from Byte Address

0x000000

0x000000

X733_04_041812

Lo
gi

ca
l B

an
k 

0
Lo

gi
ca

l B
an

k 
1

0x800000
0x7FFFFF

0xFFFFFF

http://www.xilinx.com


Implementation and Programming

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  11

• WBSTAR[28:0] = 00000000000000000000000000000

The SEM controller locates the start of its data in the SPI flash using 
THIS_SEM_IP_ADDRESS. The 32M x 8 (256 Mb) SPI flash is large enough to hold two sets of 
data considering the SEM controller option settings. Therefore, if the SPI flash is logically 
divided into two banks, one bank for each set of data, the starting address differs only by the 
most significant address bit of the SPI flash. It is assumed that Implementation A stores its data 
in bank zero, and Implementation B stores its data in bank one.

For Implementation A to find its data, THIS_SEM_IP_ADDRESS is 0x00000000 hex, or 0 
decimal. For Implementation B to find its data, THIS_SEM_IP_ADDRESS is 0x01000000 hex, 
or 16,777,216 decimal.

Figure 5 illustrates the resulting memory maps for the flash devices associated with this 
application example.

THIS_BITSTREAM_NMBR is the value applied to LEDs identified as DS25, DS26, and DS27 
on the KC705 schematic so that the bitstream can be identified visually. For Implementation A 
the value used is 2, which results in DS26 turning on and DS25 and DS27 turning off 
(Figure 10). For Implementation B the value used is 5, which results in DS25 and DS27 turning 
on and DS26 turning off (Figure 11).

Implementation 
and 
Programming

Within the selected supporting reference design directory, the xapp_implement_a 
subdirectory contains scripts to produce the result files for Implementation A. Similarly, the 
xapp_implement_b subdirectory contains scripts to produce the result files for 
Implementation B. These implementations are derived from the same source files, with 
top-level parameters specified in xst.scr yielding unique physical implementations.

X-Ref Target - Figure 5

Figure 5: Data Organization for the KC705 MultiBoot Application Example

FPGA Configuration Data Memory Map
for Configuration on the KC705 Board from

64M x 16 (1 Gb) Parallel Flash

Implementation B
FPGA Data for MultiBoot Image

Logical Bank 3
Logical Bank 2

(Not Used)

BIT File Stored Up
from Word Address

0x01000000

Implementation A
FPGA Data for Golden Image

BIT File Stored Up
from Word Address

0x00000000

SEM Controller Data Memory Map
for Private Data from

32M x 8 (256 Mb) SPI Flash

0x00000000

Lo
gi

ca
l B

an
k 

0
(F

P
G

A
 R

S
[1

:0
] =

 0
0)

Lo
gi

ca
l B

an
k 

1
(F

P
G

A
 R

S
[1

:0
] =

 0
1)

0x01000000
0x00FFFFFF

0x02000000
0x01FFFFF0

0x03FFFFFF

Implementation B
SEM Data for MultiBoot Image

BIN File Stored Up
from Byte Address
0x01000000

Implementation A
SEM Data for Golden Image

BIN File Stored Up
from Byte Address
0x00000000

0x00000000

X733_05_041812

Lo
gi

ca
l B

an
k 

0
Lo

gi
ca

l B
an

k 
1

0x01000000
0x00FFFFFF

0x01FFFFFF

http://www.xilinx.com


Validation in Hardware

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  12

For implementations with THIS_SEM_IP_ADDRESS set to a non-zero value, pointers in the 
table in the SEM controller data need to be adjusted to reflect the new location of the data. The 
makedata.tcl scripts provided with the supporting reference designs are derived from the 
original makedata.tcl script provided with the SEM controller, with minor modifications to 
support a non-zero value of THIS_SEM_IP_ADDRESS.

The makedata.tcl scripts provided with the supporting reference designs have also been 
modified to inject a test pattern in the SEM controller data. This modification enables validation 
of data set selection by injecting errors at specific locations and observing the error 
classification result.

The test pattern is located in frame address zero in the word that holds the essential bit data for 
the error correcting code (ECC) checksum. Normally, the checksum is classified as 
non-essential, which is represented by zeroes. The modified makedata.tcl script replaces 
these zeroes with THIS_BITSTREAM_NMBR. As a result, it is possible to distinguish between 
the SEM controller data of Implementation A, the SEM controller data of Implementation B, and 
unmodified SEM controller data.

Known good implementation results are provided in each of the implementation subdirectories. 
The user can rerun the implement script (implement.sh or implement.bat) in the 
implementation subdirectories, if desired. The programming script in the xapp_programming 
subdirectory can be used with either the known good or regenerated implementation results.

The programming script (make_proms.sh or make_proms.bat) checks for the existence of 
the result files and then merges the Implementation A bitstream and the Implementation B 
bitstream for programming the parallel flash on the evaluation kit. The script also merges the 
SEM controller data for programming the SPI flash. After creating the merged data files, the 
script provides instructions to program the parallel flash and prompts the user to either proceed 
with programming or skip the programming step.

Note: Programming the parallel flash can take a considerable amount of time.

If the optional SPI flash is available as part of the hardware target, the user must obtain and 
follow the instructions of a third-party programming solution and program the SPI flash 
separately.

Validation in 
Hardware

After the parallel flash (and optional SPI flash) programming is complete, the MultiBoot 
application example is ready for validation in hardware.

MultiBoot Operation

To validate correct operation of MultiBoot:

1. Disconnect all programming hardware and cycle the power.

2. Confirm that the FPGA initially loads Implementation A by observing the LEDs on 
design_number.

3. Press the MultiBoot trigger button.

4. Confirm that the FPGA loads Implementation B by observing the LEDs on design_number.

5. Press the MultiBoot trigger button several more times. Each time, confirm that the FPGA 
cycles between Implementation A and Implementation B.

These figures show the implementations loaded on each hardware target and the locations of 
the MultiBoot trigger button and the LEDs on design_number:

• SP605 Implementation A (Figure 6) and Implementation B (Figure 7)

• ML605 Implementation A (Figure 8) and Implementation B (Figure 9)

• KC705 Implementation A (Figure 10) and Implementation B (Figure 11)

http://www.xilinx.com


Validation in Hardware

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  13

X-Ref Target - Figure 6

Figure 6: SP605 Implementation A with Design Number LEDs = 2

X-Ref Target - Figure 7

Figure 7: SP605 Implementation B with Design Number LEDs = 5

Design Number LEDs MultiBoot Trigger Button
XAPP733_006_030712

Design Number LEDs MultiBoot Trigger Button
X733_07_030712

http://www.xilinx.com


Validation in Hardware

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  14

X-Ref Target - Figure 8

Figure 8: ML605 Implementation A with Design Number LEDs = 2

X-Ref Target - Figure 9

Figure 9: ML605 Implementation B with Design Number LEDs = 5

Design Number LEDs MultiBoot Trigger Button
X733_08_030712

Design Number LEDs MultiBoot Trigger Button
X733_09_030712

http://www.xilinx.com


Validation in Hardware

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  15

SEM Controller Boot

The USB-to-UART bridge on the hardware target is used to interface the SEM controller to a 
terminal program running on a PC. The Silicon Labs USB-to-UART Bridge Virtual COM Port 
(VCP) driver must be installed on the PC, and then the PC cabled to the hardware target. The 
required drivers are available free of charge on the Silicon Labs driver download site:

http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

Refer to the configuration guide for the target FPGA in References, page 20 for more 
information on installing the driver and connecting the hardware. The terminal program on the 
PC must have these settings:

• Baud: 9600

X-Ref Target - Figure 10

Figure 10: KC705 Implementation A with Design Number LEDs = 2

X-Ref Target - Figure 11

Figure 11: KC705 Implementation B with Design Number LEDs = 5

Design Number LEDs MultiBoot Trigger Button
X733_10_030712

Design Number LEDs MultiBoot Trigger Button
X733_11_030712

http://www.xilinx.com
http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx


Validation in Hardware

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  16

• Settings: 8-N-1

• Flow control: None

• Terminal setup: VT100

• TX newline: CR

• RX newline: CR+LF

• Local echo: No

The USB-to-UART bridge is typically self-powered (versus bus-powered), therefore the 
hardware target requires power before the terminal program can identify and set up the 
associated COM port. Power-cycling the hardware target can cause the terminal session to 
cease responding.

After application of power and each MultiBoot event, the SEM controller issues an initialization 
report to confirm that it is present and successfully initialized. A sample initialization report from 
the KC705 reference design is:

X7_SEM_V3_2             Core name and version
SC 01                   Enter initialization state
FS 08                   Core feature set report
ICAP OK                 ICAP communication pass
RDBK OK                 Readback initialized
INIT OK                 Initialization complete
SC 02                   Enter observation state
O>                      Observation prompt

If desired, the user can compare the observed initialization report against the reference shown 
in LogiCORE IP Soft Error Mitigation Controller v3.2 Product Guide [Ref 8]. This exercise 
validates SEM controller boot.

SEM Controller Data

If the optional SPI flash is available as part of the hardware target and the SPI flash has been 
programmed, the SEM controller data can be validated by using the test pattern in the frame 
zero ECC checksum. This validation is done by probing the error classification results from 
errors injected into those addresses.

Note: This exercise validates the SEM controller data. If the SPI flash is absent, blank, or contains 
incorrect data, the SEM controller generates logs that differ from those shown. 

From the terminal session, the user moves the SEM controller to idle (“I” command), injects one 
error (“N” command), and then returns the SEM controller to observation (“O” command). At 
the specified addresses, the error classification should generate the expected classification.

For SP605 Implementation A, the error injection addresses and expected classifications are:

• C00000820 (Non-essential, based on THIS_BITSTREAM_NMBR[0] = 0)

• C00000821 (Essential, based on THIS_BITSTREAM_NMBR[1] = 1)

• C00000822 (Non-essential, based on THIS_BITSTREAM_NMBR[2] = 0)

For SP605 Implementation B, the error injection addresses and expected classifications are:

• C00000820 (Essential, based on THIS_BITSTREAM_NMBR[0] = 1)

• C00000821 (Non-essential, based on THIS_BITSTREAM_NMBR[1] = 0)

• C00000822 (Essential, based on THIS_BITSTREAM_NMBR[2] = 1)

For ML605 Implementation A, the error injection addresses and expected classifications are:

• C00000500 (Non-essential, based on THIS_BITSTREAM_NMBR[0] = 0)

• C00000501 (Essential, based on THIS_BITSTREAM_NMBR[1] = 1)

• C00000502 (Non-essential, based on THIS_BITSTREAM_NMBR[2] = 0)

http://www.xilinx.com


Validation in Hardware

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  17

For ML605 Implementation B, the error injection addresses and expected classifications are:

• C00000500 (Essential, based on THIS_BITSTREAM_NMBR[0] = 1)

• C00000501 (Non-essential, based on THIS_BITSTREAM_NMBR[1] = 0)

• C00000502 (Essential, based on THIS_BITSTREAM_NMBR[2] = 1)

For KC705 Implementation A, the error injection addresses and expected classifications are:

• C000000640 (Non-essential, based on THIS_BITSTREAM_NMBR[0] = 0)

• C000000641 (Essential, based on THIS_BITSTREAM_NMBR[1] = 1)

• C000000642 (Non-essential, based on THIS_BITSTREAM_NMBR[2] = 0)

For KC705 Implementation B, the error injection addresses and expected classifications are:

• C000000640 (Essential, based on THIS_BITSTREAM_NMBR[0] = 1)

• C000000641 (Non-essential, based on THIS_BITSTREAM_NMBR[1] = 0)

• C000000642 (Essential, based on THIS_BITSTREAM_NMBR[2] = 1)

This is a sample log, with comments, of the terminal session from KC705 Implementation A:

O> I
SC 00
I> N C000000640        Inject error into ECC[0]
SC 10
SC 00
I> O
SC 02
O> 
SC 04
SED OK                 Single bit error detect
PA 00000000
LA 00000000
WD 32 BT 00
COR                    Begin correction rpt
WD 32 BT 00            Correction, expected
END                    End rpt
FC 00
SC 08
CLA                    Begin classification rpt
END                    End rpt, non-essential, expected
FC 00
SC 02

O> I
SC 00
I> N C000000641        Inject error into ECC[1]
SC 10
SC 00
I> O
SC 02
O> 
SC 04
SED OK                 Single bit error detect
PA 00000000
LA 00000000
WD 32 BT 01
COR                    Begin correction rpt
WD 32 BT 01            Correction, expected
END                    End rpt
FC 00
SC 08
CLA                    Begin classification rpt

http://www.xilinx.com


Validation in Hardware

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  18

WD 32 BT 01            Essential, expected
END                    End rpt
FC 40
SC 02

O> I
SC 00
I> N C000000642        Inject error into ECC[2]
SC 10
SC 00
I> O
SC 02
O> 
SC 04
SED OK                 Single bit error detect
PA 00000000
LA 00000000
WD 32 BT 02
COR                    Begin correction rpt
WD 32 BT 02            Correction, expected
END                    End rpt
FC 40
SC 08
CLA                    Begin classification rpt
END                    End rpt, non-essential, expected
FC 00
SC 02

This a sample log, with comments, of the terminal session from KC705 Implementation B:

O> I
SC 00
I> N C000000640        Inject error into ECC[0]
SC 10
SC 00
I> O
SC 02
O> 
SC 04
SED OK                 Single bit error detect
PA 00000000
LA 00000000
WD 32 BT 00
COR                    Begin correction rpt
WD 32 BT 00            Correction, expected
END                    End rpt
FC 00
SC 08
CLA                    Begin classification rpt
WD 32 BT 00            Essential, expected
END                    End rpt
FC 40
SC 02

O> I
SC 00
I> N C000000641        Inject error into ECC[1]
SC 10
SC 00
I> O
SC 02
O> 
SC 04

http://www.xilinx.com


Reference Designs

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  19

SED OK                 Single bit error detect
PA 00000000
LA 00000000
WD 32 BT 01
COR                    Begin correction rpt
WD 32 BT 01            Correction, expected
END                    End rpt
FC 40
SC 08
CLA                    Begin classification rpt
END                    End rpt, non-essential, expected
FC 00
SC 02

O> I
SC 00
I> N C000000642        Inject error into ECC[2]
SC 10
SC 00
I> O
SC 02
O> 
SC 04
SED OK                 Single bit error detect
PA 00000000
LA 00000000
WD 32 BT 02
COR                    Begin correction rpt
WD 32 BT 02            Correction, expected
END                    End rpt
FC 00
SC 08
CLA                    Begin classification rpt
WD 32 BT 02            Essential, expected
END                    End rpt
FC 40
SC 02
O> I
SC 00
I> O
SC 02

Reference 
Designs

The reference design files for this application note can be downloaded from:

https://secure.xilinx.com/webreg/clickthrough.do?cid=185389

The reference design checklist is shown in Table 2.

Table  2:  Reference Design Checklist

Parameter Description

General

Developer Name Eric Crabill

Target Devices Spartan-6, Virtex-6, and 7 series FPGAs

Source Code Provided Yes

Source Code Format Verilog and VHDL

http://www.xilinx.com
https://secure.xilinx.com/webreg/clickthrough.do?cid=185389


Conclusion

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  20

The device utilization for the reference design is shown in Table 3.

Conclusion This application note demonstrates how to apply MultiBoot and the LogiCORE IP Soft Error 
Mitigation (SEM) controller. Coordination of ICAP sharing is accomplished by asking the 
permission of the SEM controller, and data organization is fundamentally unchanged even with 
additional SEM controller data.

The reference designs provided with this document are hardware-validated examples suitable 
for adaptation to satisfy system-specific design management and field upgrade requirements.

References These references provide additional information for this application note:

1. XAPP517, Dual Use of ICAP with SEM Controller 

2. UG380, Spartan-6 FPGA Configuration User Guide

3. UG360, Virtex-6 FPGA Configuration User Guide

4. UG470, 7 Series FPGAs Configuration User Guide

5. UG525, Getting Started with the Xilinx Spartan-6 FPGA SP605 Evaluation Kit

Design Uses Code or IP from Existing Reference 
Design, Application Note, 3rd Party, or 
CORE Generator Software

SEM_V3_2 or higher

Simulation

Functional Simulation Performed N/A

Timing Simulation Performed N/A

Testbench Provided for Simulations N/A

Testbench Format N/A

Simulator Software and Version N/A

SPICE/IBIS Simulations N/A

Implementation

Synthesis Software Tools and Version XST, ISE® Design Suite 14.1

Implementation Software Tools and Version ISE Design Suite 14.1

Static Timing Analysis Performed Yes

Hardware Verification

Hardware Verified Yes, all six designs

Hardware Platform Used for Verification SP605 board and 128 Mb SPI flash
ML605 board and 128 Mb SPI flash
KC705 board and 256 Mb SPI flash

Table  3:  Device Utilization for Logic Added to SEM Controller Example Design

FPGA LUT Flip-Flop Block RAM BUFG

Spartan-6 55 35 0 0

Virtex-6 70 35 0 0

7 series 70 35 0 0

Table  2:  Reference Design Checklist

Parameter Description

http://www.xilinx.com
www.xilinx.com/support/documentation/application_notes/xapp517_DualUse_ICAP_SEM.pdf

www.xilinx.com/support/documentation/user_guides/ug380.pdf
www.xilinx.com/support/documentation/user_guides/ug380.pdf
www.xilinx.com/support/documentation/user_guides/ug360.pdf
www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
www.xilinx.com/support/documentation/boards_and_kits/ug525.pdf


Revision History

XAPP733 (v1.0) May 24, 2012 www.xilinx.com  21

6. UG533, Getting Started with the Xilinx Virtex-6 FPGA ML605 Evaluation Kit

7. UG883, Kintex-7 FPGA KC705 Evaluation Kit Getting Started Guide

8. PG036, LogiCORE IP Soft Error Mitigation Controller v3.2 Product Guide

9. UG526, SP605 Hardware User Guide

10. UG534, ML605 Hardware User Guide

11. UG810, KC705 Evaluation Board for the Kintex-7 FPGA User Guide

Revision 
History

The following table shows the revision history for this document.

Notice of 
Disclaimer

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of
Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are made available "AS
IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS,
IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2)
Xilinx shall not be liable (whether in contract or tort, including negligence, or under any other theory of
liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the
Materials (including your use of the Materials), including for any direct, indirect, special, incidental, or
consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage
suffered as a result of any action brought by a third party) even if such damage or loss was reasonably
foreseeable or Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to
correct any errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior
written consent. Certain products are subject to the terms and conditions of the Limited Warranties which
can be viewed at http://www.xilinx.com/warranty.htm; IP cores may be subject to warranty and support
terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be
fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in Critical Applications: http://www.xilinx.com/warranty.htm#critapps.

Date Version Description of Revisions

05/24/12 1.0 Initial Xilinx release.

http://www.xilinx.com
http://www.xilinx.com/warranty.htm
http://www.xilinx.com/warranty.htm#critapps
www.xilinx.com/support/documentation/boards_and_kits/ug533.pdf
www.xilinx.com/support/documentation/boards_and_kits/ug883_K7_KC705_Eval_Kit.pdf
www.xilinx.com/support/documentation/ip_documentation/sem/v3_1/ug764_sem.pdf
www.xilinx.com/support/documentation/boards_and_kits/ug526.pdf
www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
www.xilinx.com/support/documentation/boards_and_kits/ug810_KC705_Eval_Bd.pdf

	Applying MultiBoot and the LogiCORE IP Soft Error Mitigation Controller
	Summary
	Introduction
	MultiBoot Overview
	Programing the Next Bitstream Location
	Commanding the Next Bitstream Load
	Support Detail

	Coordination of ICAP Sharing
	Data Organization
	MultiBoot Application Example
	Getting Started
	Design Overview
	Design Detail

	Implementation and Programming
	Validation in Hardware
	MultiBoot Operation
	SEM Controller Boot
	SEM Controller Data

	Reference Designs
	Conclusion
	References
	Revision History
	Notice of Disclaimer


